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The solitary wave of maximum amplitude 
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The maximum amplitude of the solitary wave of constant form is determined to 
be 0*83b, where b is the depth far from the crest. In  the analysis it is assumed that 
the crest is pointed and the motion is two-dimensional and irrotational. The com- 
plex velocity potential is expressed in terms of known singularities and an 
infinite power series with unknown coefficients. Approximate solutions are ob- 
tained by truncating the power series after N terms, where N = 1,3 ,5 ,7 ,  and 9. 
The amplitude, a measure of the error, and several other pertinent quantities 
are computed for each value of N .  

1. Introduction 
Since the experimental studies of Russell (1844) there has been intense interest 

in the motion of gravity waves. Of this interest no small part has been focused on 
the solitary wave. Russell described solitary waves which moved with almost 
constant form slowly decreasing in amplitude. For some time it was not known 
if this decrease in amplitude was due completely or only in part to viscous resist- 
ance. In  particular, the question was, does there exist a two-dimensional, irrota- 
tional solitary wave which is of truly constant form and celerity? Stokes (1891) 
at one time argued that there did not exist such a solution but later reversed this 
opinion. McCowan (1891) and others, by obtaining various approximate solu- 
tions, substantiated the latter opinion of Stokes. Finally, in 1954, Friedrichs & 
Hyers gave an existence proof. This proof, however, did not give any insight as 
to what amplitudes these wave may take. 

The experiments of Russell indicated that if a solitary wave exceeded a critical 
amplitude it would break. Rankine (1864) suggested that at this critical ampli- 
tude the speed of a particle at the crest was equal to the celerity of the wave, and 
the free surface formed a point or a cusp a t  the crest. Stokes (1880), by assuming 
this criterion, established the included angle of the point a t  the crest to be 120". 
Approximate analyses by McCowan (1891) and Packham (1952) have since 
indicated that the critical amplitude does occur according to the Rankine 
criterion, but to the writer's knowledge, no proof has been presented. 

a 
A real-valued constant; 
a,, uI, u2, etc. real-valued coefficients of a power series; 
b upstream depth; 
b,, b,, b,, etc. real-valued coefficients of a power series; 

A list of the symbols used throughout this paper is given below: 
elevation of wave crest relative to channel bottom; 
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co, cl, c2, etc. real-valued coefficients; 
f ( t )  the transformation z = f(t) which maps I' onto the flow field; 
Q fluid discharge; 
g acceleration of gravity; 
U 2-component of velocity; 
U upstream velocity; 
2, y-component of velocity; 
r 
F2 

5 
(T real-valued variable; 
7 real-valued variable; 
X complex potential; 
h 

2. Problem definition 
Because the wave moves with a uniform celerity, the fluid field may be made 

steady by viewing i t  from a co-ordinate system which moves with the wave. 
After this has been done, the flow field appears as shown in figure 1, where the 

the domain [ It1 < 1, Im ( t )  > 01; 
defined by P2 = U2/gb ; 
the normalized complex velocity defined by 6 = (u - iv)/  U ; 

defined by nhP2 = tan (nh). 

z-plane t-plane 

ot t 

X-plane T-plane 

FIGURE 1. Physical and auxiliary planes. 

crest is a stagnation point and the velocity U of the stream far from the crest is 
equal to the celerity of the wave. It will be assumed that the wave is symmetric 
about the y axis, that the fluid is inviscid, and that the motion is two-dimensional 
and irrotational. 

A complex velocity potential ~ ( z )  is sought which is analytic and possesses 
a non-vanishing derivative dX/dx  in the domain of the flow field (x being the 
complex potential). Moreover, dX/dz  is to be continuous and non-vanishing on 
the boundary except for the stagnation point a t  (2). Lastly, xis to be univalent in 
the domain of the flow field. If these conditions are satisfied, the complex velocity 



The solitary wave of maximum amplitude 

which is related to x by the expression 
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(1) 

will be analytic in the domain of the flow field. 

3. Solution 
A necessary step in the solution is the mapping (in principle) of the domain 

I' = (It1 < 1, Im ( t )  > 0} in the complex t-plane onto the domain of the flow field. 
The mapping x = f (t) would be unique if three prescribed points on the boundary 
of the flow field were mapped into three prescribed points on the boundary F of 
the domain I?. Hence, it is permissible to require the mapping of point (1) into 
t = - 1, point ( 2 )  into t = i, and point (3) into t = 1. The functionf(t) exists and 
is continuous for ts(r , t  + f 1) if x exists. To see this we first note that x(z) 
possesses an inverse z(x) because it is univalent. This function z ( x )  maps the 
strip 0 < Im (x) < Q onto the domain of the flow field with the point x = iQ 
going into z = ai. The sequence of mappings 

.=--log(=), Q T = k ( t + i )  
n 

connects the strip 0 < Im (x) < Q in the 2-plane to the domain I? in the t-plane 
through the lower half of the intermediate T-plane. Because f ( t )  is unique we must 
conclude that 

which establishes the existence of f(t). Moreover, since z(x) is continuous on the 
boundary of the strip 0 < Im (x) < Q, f ( t )  must be continuous for ts(F, t + & 1). 

An equivalent statement of equation (4) is 

which s the potential function for the domain I?. 

Behaviour of 5 near the crest 

It is instructive to examine [ in the neighbourhood of the point T = 0. Let 

C(T) = q*eie, (6) 

where q = Uq* and 0 is the argument of the velocity vector. From equation (2) 
we obtain 

The constant-pressure condition on the free streamline, as expressed by the 
Bernoulli equation, requires 

where q is the speed and y is the elevation of a point on the free streamline. 

(q2/29) + Y = a, (8) 
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Differentiating equation (8) with respect to T and combining the resulting 
expression with equations ( l ) ,  (6) and (7) produces 

In addition to equation 

and 

dq* 2 sin8 
dT nP2 1 -T2'  

q " 2 -  - - ~ ___ 

(9) q* and 6' must satisfy the conditions 

as T++O, 
q*+o 

e3+-p 

as T+-O. 

{ CTl-ZPh eiC4n-P) Equations (10)  suggest that 

(9) 

as T -+ 0 where C is a real constant. Substituting the above expression into the 
left- and right-hand sides of equation (9) gives 

( 1  - spin) ~ 3 ~ 2 ( 1 - - 2 p / n ) - 2 ~ 1 n  

and 
2 sin (in-!) 

~ for T > 0. nF2 1-T2 

Clearly equation (9) is satisfied by equation ( 1  1 )  as T -+ 0 if 

p = In 3 ( 1 2 )  

and c3 = 3/(nPZ). ( 1 3 )  

Hence, it is reasonable to assume that the solution {(T) can be expressed? as 

where 

5 = T%F(T),  
]F(O)l = (3/nP2)). 

By using equation ( 3 )  we obtain for the t-plane 

where 

{( t )  = ( 1  +t2)*G(t), 

(G(i)l = (3/2nP2)9. 

The IR function 

G(t)  = [ ( t )  (1 + t2)-*. 

Because Im [5(t)] = 0 ( - 1 < t < 1 )  it  can be seen from the above expression that 
G ( t )  is real-valued and continuous here. Moreover, G(t)  is analytic for td? and non- 
vanishing for t er  UF.  Hence, by the reflexion principle G(t) is analytic for It I < 1 
and non-vanishing for It\ < 1 .  Since it is convenient to work with the logarithm 
of G(t) instead of G(t) directly, we define 

From equation (14 )  we obtain 

Q(t) = logG(t)-+log(2). (16)  

-t A complete description of the singularity possessed by 5 at  the crest is not attempted 
here. The interested reader is referred to  Lewy (1950, 1952) and Carter (1961) for a discus- 
sion of closely related topics. 
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The function !2 will be analytic for (tl < 1 and continuous for It/ < 1 with the 
possible exception of t = 1. Combining equations (14) and (16) produces 

[ ( t )  = (( 1 + t2)+ eQ(t))/3+. (17) 

The free streamline 

Q(eig) = $(r) +ie(cr), For t = eia ( 0  < IT 6 T), let 

where q5 and e are real-valued functions of cr. Combining equations (17) and (18) 
gives 

where q(v) is the speed at  a point on the free streamline. Equation ( 5 )  gives 

(19) [q(a)/U12 = cosQcre26 (0 6 0- < +n), 

x(ei") = (2Q/7r) [log (cot &T) + +nil, 

or 

Because 

we obtain by combining equations (14) and (17) 

or 

and 

Constant-pressure condition 

Combining equations (1  9) and (21)  with the Bernoulli equation [equation (S)] 

where F2 = U3/Qg is the Froude number of the stream far from the crest. By 
differentiating and rearranging equation (33) we obtain 

, 2 e-3$ sin (+r+ e)  1 sin g 
nF2  singcoscr 3 COSCT 

q5 =-- +-- (0  < 0- < $77). 

Combining equations (15), (17) and (18) gives 

(34) 

Behaviour of 52 near t = & 1 

The numerical solution obtained by De Boor (1961) for fluid flow under a sluice 
gate and those obtained by Watters & Street (1964) for flow over bumps in open 
channels indicate that 6(t) is so badly behaved at points t = f 1 that it cannot be 
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accurately approximated there by an analytic function. Apparently this dig- 
culty occurs because c’(t) is not continuous at t = & 1. In  this work part of this 
singularity is isolated and used to express c( t )  in terms of a function Q*(t) which 
does have a continuous derivative at these points. 

To study the form of this singularity i t  is convenient to work in the upper half 
of the W-plane with the points (l), (2) and (3) going into respectively the point 
at infinity, W = 1 and W = 0. Hence, 

(26) 

c(W) = eP@’), (27) 

w = ( 1  -T) / (T+ 1). 

Let A be the domain I W J  < 1, Im ( W )  > 0. Because c( W) does not vanish for 
WsA we may define 

where P is analytic for WeA. Combining equations (9), (26) and (27) gives 

where R and I are real-valued for W > 0 and 

Combining equations (7) ,  (26), (27) and (29) produces 

dZ Q e-R-iI 
-=--- aw 7ru w 

As a first attempt to determine the behaviour of c( W )  for WeA, let us assume 

P ( W )  = A(e-ni W)&, (31) 

where h > 0 and A are real constants to be determined. Clearly P ( W )  is real- 
valued for T < 0. For T > 0 

R = AW”cosAn, I = -AWAsinhn. 

By substituting the above expressions into the left- and right-hand sides of 
equation (28) we Obtain dl/dW = WA-1 cos An-, 

and 1/FZn (e-3R sinI/ W )  = ( l /Pn)  [A WA-lsin An- + O( Wh--l)], 

where the symbol O( W”l) indicates terms which approach zero as W -+ 0 when 
divided by WA-l. Thus, it can be seen that equation (31) satisfies equation (28) as 
W-tO if 

Combining equations (30) and (31) and integrating the resulting expression gives 

tannh = AnF2. (32) 

A& 
h7.r U y = - Whsinhn+O(Wh)+Im(C) and 



The solitary wave of maximum amplitude 315 

for the equation of the free streamline. As W -+ 0 x -+ co and y -+ Im (C). Clearly 
equation (31) represents the asymptotic behaviour of a jet on a flat plane, since 
y is monotonically increasing or decreasing depending upon the sign of A .  

It was argued by Lenau (1965) that P( W )  possesses an asymptotic expansion 
of the form 

m k 
P( W )  N a,,, (e-ni W)X + a2,, (ecni W)2* + (ecri  W)k* I; ak,mlogm (e-ni W )  

k=2 m=O 

a t  the point W = 0, where his a root of equation (32). These arguments which are 
long, tedious and not completely satisfactory will not be given here. From this 
expansion we note that 

dP/dW N - ha,,,(e-”i W)”l- 2ha2,,(e-ni W)2A-1+ O( W2h-1). 

Combining equations (3), (17), (26), and (27) with the above expression gives 

[2ht* + (1  - t )  htA-11 
a ,  ,( 1 - t p - 1  gy(t)+-7 N - __-__ 

2 t  
3 ( l + t  ) (4t)A t* 

az,,( 1 - t)4”-1 
[4ht2h+ (1 - t )  2ht2”-1] + 0[( 1 - t)4A-1]. (33) - 

(4t)2A t 2 A  

If h < + we observe from the above expansion that Q’(t) is infinite a t  t = 1. 
Because the Froude number will be greater than unity, one sees from equation 
(32) that h could lie in the interval (0 , i ) .  It has been assumed in this work that 
the only root h of interest does lie in this interval. 

The Q* function 

Because of the method of obtaining approximate solutions used in this work, it  
is desirable to define a function O* which has a continuous derivative at t = 1. 
Hence, we define Q* = Q - {(a1,,( 1 - t2)2X)/(4A) 21. (34) 

Since the square of the Froude number should be about two, it will be assumed 
that F2 > 41. so that 4 < h < &. Thus, we have from equation (33)  

[ 
ha,,,( 1 - t2)2A-1 t2  

4 h  
lim Q*(t) = lim a’+ 
t - 1  t -1  

For t = eiu (0 < CT < n), let 
I$*((T) = Re(Q*). 

Then, E.*(cT) = Im (Q*), 

and 

Hence, in view of equation (35), 

From equation (34), 

e*’(a) = Im (dQ*/da) = Im {(dQ*/dt)i eiu). 

s”’(0)  = -1 

Q(t)  = O*(t) + A (  1 - t2 )2h,  

3’ 

(35) 

(36) 

(37) 

(38) 

where A is a constant to be determined. Because a* is real-valued for imaginary 
values oft, Q*’ is not only continuous at t = 1 but by the reflexion principle must 
also be continuous at  t = - 1. 
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Because Q and ( 1  - t2)2A are analytic in It] < 1 and real-valued for - 1 < t < 1 
it is seen from equation (38)  that Q* must also have these properties. Thus, sZ* 
may be expanded about the origin into a power series which has real coefficients, 
i.e. 

Q*(t)  = ao+alt+a,t2+ ..., 

where a,. (j  = 0, 1,2,3,4,  . . .) are real numbers. However, Q* is also real-valued 
for t = ti, 0 < 5 < 1. Thus, the coefficients of the odd powers of t  must be zero 
so that 

(39) Q*( t )  = ao+a2t2+a,t4+ . . . I  tl < 1. 

For t = e b  (0  6 G < in-), we obtain from equations (29) and (27) 

where 

and 

Combining equations (24) ,  (25) ,  (38) ,  (39)  and (40)  produces 

r(c) = Re [( 1 - e2iu)2A] = [2 - 2 cos 25IA cos [h(n - 2a)l  

&(G) = Im [( 1 - e2iu)2*] = - [2 - 2 cos 2 ~ 1 ~  sin [h(n - 2cr)l. 

(41)  

( 42) 

m 

- C 2k(a2k + AbZk) sin ( 2 k 4  = - a2k cos ( 2 k ~ )  +Ar(a)  
k= 1 

1 xl 

a2& sin (21%~) + AS(G) 
X 

sin G cos G 

2h(l-  2 4  ( 2  - 2 4 . .  .(k - 1 - 2h) 
b2k = - ( k =  1,2 ,3  ,... ). k! where 

Solving for the Fourier coefficients on the left side of the above expression 
produces the infinite system of equations 

r a, 1 

1 x sin rr/3 + 2 a2k sin (2ka)  + A6(a) 1 k=l 

co sin ( Z W Z G )  
-3exp - 3  2; a2k(- l )k -3AI ' (+n)  d a  (WZ = 1,2,3 ,... ). [ k=O 

(43)  
Combining equations (25 ) ,  (39) and (40)  produces 

By combining equations (37) and (39)  we obtain 
m 

C 2kaZk = -4. 
k=l 

(45)  
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Because c-. 1 as t - t  & 1, we obtain from equation (17) 

Q( & 1) = 0, 

Q*( k 1) = 0. and from equation (38) 

Combining equation (39) with the above expression produces 
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m 

a, = - C aZk. 
k = l  

Numerical procedure used to obtain approximate solutions 

Approximate solutions were obtained by truncating the power-series expansion 
of Q* to N terms and satisfying the first N of equations (43). By considering 
equations (25), (44), (45) and (46) in addition to these, one obtains N + 4 non- 
linear simultaneous equations with N + 4 unknowns aj (j = 0,2, . . . ,2N, A ,  A, P), 
This system of equations was reduced to an N + 3 system by using equation 
(46) to eliminate the unknown a, from the remaining equations. Residuals Fk. 
(k = 1,2, . . . , N + 3) were defined such that 

1 1  n 
+Ac?((T) -+exp 3 2 (1-(-1)~)a~~-3AI ' ($n)  sinv 1 { k = l  

sin (2mv) 
X dv-a,,-Ab,, (m = 1,2,3, ..., N). 

cos 0- 

Fn+3 = rh - {tan (rh)/F2), 

and the matrix equation 

+ 

Fl 

F 2  

Fn+3 

= 0,  

was solved repeatedly for corrections Aa,, Aa,, . . ., Ah until the residuals were 
small. For each cycle the most recent estimates of the unknowns were used to 
compute the residuals and their derivatives. The initial estimates were aZk = 0 
for k = 2,3,4, ..., N, a, = -9 ,  A = - 0.322, h = 0.322 and F2 = 1.60. These 
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estimates were obtained by assuming the amplitude of the wave to be alb = 1.80 
and setting aZk = 0 ( I c  = 2,3,4,  ..., N ) .  From the Bernoulli equation one can 
obtain the relationship alb = 1 + +F2, which yields F2 = 1.60. Equation (45) 
gives a2 = - 8  and equation (32) gives h = 0.322. Finally, equation (44) yields, 
after some rearrangement, 

Once the quantities azj ( j  = 1,2,  ..., N , A , P 2 )  and h were determined, the 
approximation 

12 

k = l  
Q(t)  g - 2 a2k(l-tZk)+A(1-t2)2h 

was completely determined. The wave profile was then computed using equations 
(21) and (22). The amplitude, however, was determined from the expression 

a - 4Q J 1 
e-*(iq) 24 

(1+r12)(1-r17ta77 

where 

which can be obtained by employing equations ( 5 ) ,  (17) and (34). 

Error 
Because the solutions obtained by the numerical procedure just discussed are 
not exact, there was a need for a measure of the error of a given solution. For this 
measure the equation 

was used. From equation (20) we see that ~ ( g )  = 0 for an exact solution, thus the 
magnitude of 171 should be a measure of the accuracy of an approximate solution. 

4. Discussion 
From the computed results shown in table 1, it appears that good estimates of 

the wave amplitude a/b and of the upstream Froude number F2 are 1-83 and 1.65, 
respectively. One can only guess to what accuracy these estimates are valid. 
Judging from the behaviour of [ / T I /  and a/b with increasing N ,  it appears that the 
error is no more than 

In the section on the behaviour of y near t = 1, i t  was assumed that the proper 
value of h lay in the interval (0, i). The behaviour of 1 1 ~ 1 1  leaves little doubt as to 
the validity of this assumption. 

Two previous attempts to determine the maximum amplitude of the solitary 
wave deserve special mention. First McCowan (1894) obtained the estimate 
alb = 1.78. The solution was obtained by satisfying the constant-pressure condi- 
tion in the neighbourhood of the crest and the point at infinity. The second work 

0.01. 



The solitary wave of maximum amplitude 319 

N A  pa alb 11711 a,  a4 a6 a18 a14 a18 

1 -0.3242 1.6366 1.8156 1*6170 -0’1667 - - - - - - - - 
3 -0.3106 1.6397 1.8212 0.59% -0.1463 0.0040 -00.0094 - - - - - - 
5 -0.3096 1.6470 1.8250 0.31 -0.1439 0.0018 -0.0072 0,0032 -0.0035 - - - - 
7 -0.3099 1.6512 1.8269 0.16% -0.1437 0.0009 -0,0062 0.0025 -0.0028 0.0018 -0.0019 - - 
9 -0.3106 1.6542 1.8281 0.12% -0.1441 0.0005 -0.0057 0,0022 -0.0024 0.0015 -0.0016 0.0012 -0*0012 

TABLE 1 

F I I I 1 I 
2.0 

of interest is due to Packham (1952). Packham approximated the constant- 
pressure condition on the free streamline by replacing sin 0 by 1 sin 30, where 
0 = arg (5). For the new boundary conditions he obtained an exact solution with 
the condition 

F2 = (31 tan +r)/(+n). 

Packham determined 1 by minimizing the integral 

s,”” (sin 8 - I sin 3012 d e  

to obtain I = 31/(3)/(9n). By using this value one obtains 

F 2  = 2.05. 

If one uses 1 = 9 ,  however, the fioude number F 2  = 1.6540 is obtained, which is in 
remarkable agreement with those found in table 1. The writer believes that this 
agreement is not accidental. For I = 4, the constant-pressure condition will be 
satisfied over the majority of the wave profile. Moreover, the singularity at  the 
crest possessed by Packham’s solution is independent of 1. Hence the crest is of 
proper shape regardless of the I chosen. It appears then, that the upstream 
Froud number F2 = 1.654 is correct to four significant figures. 
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